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University of Durham, South Road, Durham DHl 3LE, UK 

Received 4 October 1993 

Abstract. The Born-Infeld equation in two dimensions is generalized to higher dimensions. 
Lorentz invariance is retained, and the resulting system is completely integrable via linearization 
by Legendre transformation. This generalization retains homogeneity in second derivatives of 
the field. 

1. Introduction 

There are many nonlinear integrable equations now known in more than two dimensions; 
the DavyStewartson equation [I], the Kadomtsev-Petviashvilli equation [2] and the 
Konopelchenk+Rogers equation [3] being well known examples. Most of such equations, 
including these particular ones, suffer from a lack of Lorentz invariance, so are inappropriate 
as field theoretic models with particle-like solutions. In the case of 1 + 1 dimensions, there 
are two well known integrable nonlinear equations which are Lorentz invariant, which admit 
localized solutions and have been used to model fundamental particles; the SineGordon 
equation [4] and the Born-Infeld equation [5], which in light-cone coordinates in 1 + 1 
dimensions is given by 

. .  . .  
The parameter A, if non-zero, can be scaled to unity. This equation is known to be 
integrable [6-81. In this article we should like to view it as an integrable deformation 
of the Bateman equation, which corresponds to (1.1) when h = 0,  in analogy with the 
integrable deformations of conformal field theories proposed by Zamolodchikov [9]. The 
properties of covariance (if @(x,  f) is a solution to the Bateman equation, so is any function 
of ,$(x , t ) )  and of the existence of an infinite class of inequivalent Lagrangian densities 
from which the equation may be derived [IO] are lost, but that of integrability is retained. 
Also the curious property of the Bateman equation that it is form invariant under arbitrary 
linear transformations of the coordinates (x ,  Z), which means that the Bateman equation is 
'signature blind', is replaced by Poincar.6 invariance. 

In some recent work [lo, 11,131, one of us and his collaborators have proposed a 
class of completely integrable models which we call universal field equations, of which the 
Bateman equation is the two-dimens,ional prototype. This equation, describing a theory in 
d .dimensions, may be written in the following equivalent forms 

\ axi axiaxj 1 
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or 
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Tr(GA) = 0 

where the matrix G has components 

and 

-1  
Aij  = Adj (a) = ,et( a) (*) 

axkaxi i j  axkaxi axkaxi i j  

is the adjugate matrix of Mi, = a2@/axiaxj. Under a Lorentz transformation generated by 
the matrix A, both G and A transform in the same way as 

G’ = A-’ GA A’ = A-’ AA. (1.6) 

From (1.3) it is easy to see that, the universal equation is invariant under Lorentz 
transformations. How may it be deformed in such a way as to retain the properties of 
Lorentz invariance and integrability? G is idempotent and so the only other matrix available 
to us which transforms according to (1.6) is the metric tensor qj j .  Thus the onl? candidate 
with the properties we require is the equation 

C A i j ( G j i  + f(Tr(qG))qji) = O  (1.7) 
i . j  

where f is an arbitrary function of the quadratic Lorentz invariant constructed from 
a@/ax;. We are excluding the possibility of an explicit dependence upon @, and retain 
the homogeneity in second derivatives. In the following considerations we shall take f to 
be a constant, A, generalizing (l.l), with a brief mention of the more general case when 
we discuss linearization. Using the results of [13], we shall show how both of these forms 
give rise to equations linearizable by a Legendre transform. It is crucial for the proof of 
integrability given below that the second-order derivatives enter only through components 
of the adjugate matrix which appear linearly. The only other possibility, tractable by 
this method, is for an additional linear dependence upon det M .  Other Lorentz invariant 
equations could be constructed using powers of the matrix M ,  including the Barbashov- 
Chernikov generalization of the two-dimensional Born-Infeld equation to higher dimensions 
[7], but there is no incontrovertible evidence for the integrability of such equations, despite 
some hopeful remarks in the literature [14]. Note that neither this generalization nor the 
generalization presented here are equivalent to the original Born-Infeld equation [5], but 
the terminology seems to be established for the two-dimensional situation. The three- 
dimensional version of these equations is a candidate for an alternative theory of strings, as 
it describes the motion of a surface @(XI, X Z ,  xg), the world sheet of a string. The case when 
h = 0, which just describes developable surfaces [15] was treated in [Ill. The characteristic 
property of such surfaces is that they contain straight lines. 

We are thus led to essentially three forms of nonlinear field equations in four dimensions 
which are Lorentz invariant and are integrable; the well known system of self-dual Yang- 
Mills equations and its supersymmetric extensions [16,17] , the relativistic string equations 
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[18,19], which are a bit of a cheat as the base space is two-dimensional, and the equations 
proposed here, which are directly related to linear equations through the Legendre transform. 

The paper is organized as follows. In the next section a new derivation of some well 
known properties of the Born-Infeld equation in two dimensions is given. The proof of 
integrability goes back at least to [7] and is discussed further in [8,20], but we shall present a 
slightly different version for completeness. Section 3 briefly reviews the Legendre transform 
method, and shows how the Lorentz invariant deformations of the universal field equation 
given by (1.1) may be solved implicitly. After a brief discussion of the (2+ I)-dimensional 
case, the Lagrangian for the equation (1.7) is constructed. Unliie the case of the universal 
field equation, it is unique, thus resolving an ambiguity as to how such theories might be 
quantized by the Feynman parkintegral method. On the other hand, the equation of motion 
also follows from the same iterative procedure described in [lo]. 

2. The Born-Infeld equation 

The Born-Infeld equation in light cone coordinates in 1 + 1 dimension is given by 

a@ 2a2@ a@ 'a2@ 8 4 3 4  a2@ -+ - _ _  X+2-- _ -  (a,) a t2  ( a t )  ax2 ( ax a i ) a x a t  - 0  
the parameter A, if non-zero can be scaled to unity. This equation can be viewed as an 
integrable deformation of the Bateman equation, which corresponds to A = 0, in analogy 
with the integrable deformations of conformal field theories proposed by Zamolodchikov 191. 

This equation can be written as a first-order equation in a similar manner to the Bateman 
equation with the help of the two independent roots U,, uz of the quadratic equation for 
the characteristics 161 

The roots of this equation are 

. .  

The Born-Infeld equation can then be written in either of two forms 
a u l  a w l  

at ax 
- u2- _ -  

au2 auz  
a t  ax 

-U]- .  _ -  

(2.3) 

These equations possess an infinite number of conservation laws; it is easy to verify that 
a a 

-(U1 + U 2 1  = -(u1u2) a t  ax 
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In fact, if S, denotes the symmetric polynomial of nth degree in u1. u2. then the general 
conservation law is 
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a a --s, = -(U,u2Sn-]) 
at  ax 

this is easily proved using S,, = U: + ulS,-~ and induction. The general solution of the 
equations for u l ,  u2 is an implicit one; the roles of dependent and independent variables 
may be interchanged to give 

(2.10) 
ax at 

UI- _ = _  
a u l  aUl 

with the solution 

x = f ( u d  - ulf’(u1) +g(u2)  - uzg’(u2) 

t = f‘h) + s’(u2) 

(2.1 1) 

where f, g are arbitrary functions and a prime denotes differentiation with respect to the 
argument. Note that this is still some way off a solution for 6. which requires a solution of 
the above equations for &$/ax, &$/at which may then in principle be integrated. There is 
a nice class of explicit solutions 

(2.12) 4 = F ( u x  + O f )  + y x  + st 
where F is arbitrary, and the constants 01, ,6, y ,  8 satisfy the polynomial equation 

hug + ;?orsys - / 9 y *  - 2 8 2  = 0. (2.13) 

The complete solution may be obtained in principle by the inversion of the equations for 
x .  t in terms of ul, u2. and the subsequent integration of the equations 

(2.14) 

The consistency condition which guarantees integrability of these equations is simply the 
Born-Meld equation itself. Thus in, principle this equation is as fully integrable as is the 
Bateman equation, even though, according to the analysis of [21], it admits only a single 
Lagrangian, namely [A. + 4(aq/a~)(a4/at)}]/~. 

Here is an example of a solution generated by the results (2.1 1) and (2.14). A particularly 
convenient choice of f and g in thesystem (2.11) is f ( u l )  = U: and g(u2) = -U:. This 
gives explicit expressions for u I  and u2 in terms of x and t 

U1 = -(4x + t2)/4t 

U 2  = -(4x - t )/4t, 2 
(2.15) 

These can be substituted back into the formulae (2.14) which can then be integrated to give 
an explicit solution 

(2.16) 
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3. Legendre transforms 

The Legendre transform, which was used in [ 131 to linearize the universal field equation 
may also be used to linearize (1.7). This transform, which is clearly involutive, has the  
flavour of a twistor transform. 

The multivariable version of this transform runs as follows [22]. Introduce a dual space 
with coordinates c;, i = 1, . . . , d and a function w(&) defined by 

$(X1, x2,. . .,&I) + W(h,  ( 2 , .  . , I  b) X1h + X 2 h  + .  . ., x d b  (3.1) 

To evaluate the second derivatives $ii in terms of derivatives of w it is convenient to 
introduce two Hessian matrices, 4 and W with matrix elements #;j and wt.6, = wij. 
respectively. Then assuming that 4 is invertible. 4 W  = 1 and 

The effect of the Legendre transformation upon the equation (1.7) is immediate; in the 
new variables the equation becomes simply 

(3.4) 

a linear second-order equation for w. All sums are implicitly taken with the Lorentzian 
metric. Introducing the variable p = (C(2)"2 this equation takes the form 

Single-valued solutions of this equation are easily obtained when it is realized that the 
eigenfunctions of the generalized total angular momentum operator Ei<j(&(a/a.$j) - 
cj(a/a(;))* are just harmonic functions on the d-l sphere, with eigenvalues -n(n+d-Z), n 
integral. Then the general solution can be found by the method of separation of variables as 
w = C, F,(p) x (general harmonic of degree n), where F,(p) is a solution to the ordinary 
differential equation 

(3.6) 

Given such a solution, a parametric representation for n; in terms of can be constructed 
from x; = aw/a&,  and these relations, together with the definition of w in terms of 6, are 
sufficient to eliminate the variables <j and solve for $. 

Of course this procedure is only a solution in principle; in practice there will be 
comparatively few solutions for w for which an explicit solution can he obtained. 
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4. The case of 2 + 1 dimensions 

In 2 + 1 dimensions our equation takes the form 

D B Fairlie and J A Mulvey 

cijk&&@ia@j,8(@y@k - f ( P ) q y k  = 0. (4.1) 

Here repeated indices are summed, #j denotes a#/axj and p is defined as in the previous 
section. Even the simplest case in (2 + 1) dimensions, where the arbitrary function f ( p )  is 
just a constant, A, is awkward. A more convenient choice is f ( p )  = -p2. Then, the ODE 
(3.6) becomes 

3p2 + 1 dF, -- - n(n + 1)F. = 0. 
P dp 

(4.2) 

This provides the solution for F, 

which permits a general solution for w. No special case has been found to be invertible in 
closed form for @(XI. x2, xg).  

The construction of an infinite set of conservation laws for the equation (4.1) has also 
defied analysis as yet. However we can demonstrate a form for the universal equation, 
analogous to the Bateman case discussed in 1101 as follows. Define U =&/@I, v = @ s / @ ~  
then (4.1) in the case where f = 0 becomes 

U2 - U U ]  U3 - vu1 
v z -  uv1 U3 - vu, 

in a form suitable for generalization to d dimensions, or else, more explicitly as 

UZv3 - VU3u2 - u(ulV3 - vlU3) - V(U2v I  - U ] % )  = 0. 

A subsidiary condition is that the matrix in (4.4) is symmetric. 
There are an infinite number of conservation laws of the form 

+ ("')"(!3] n + 1 ax, 

+L[(!p(,-> axz m - ($)L(!c) - (!cj"(""j ax, m +  1 
ax3 

+ (!zjL("j] =o. 
m + l  axl n 

(4.4) 

(4.5) 

(4.6) 

It seems reasonable to expect that this procedure should generalize to the deformed 
equation (4.1), but we have not been able to accomplish this. 
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5. Lagrangian derivation 

In contrast to the universal field equation, which possesses an infinite number of inequivalent 
Lagrangian functions of which it is the resultant variation, the modification (1.7) admits only 
one [21]. However this Lagrangian retains one feature of the fully covariant situation; it may 
be expressed in terms of an iteration of Euler variations. Denote by E the Euler differential 
operator 

(in principle the expansion continues indefinitely but it is sufficient here to terminate at the 
stage involving the variational operator a/a&,,). Now consider the Lagrangian density 

with equation of motion 

(5.2) 

(5.3) 

where all the contractions are taken using the Lorentz metric. In  the case where the 
dimension of spacetime is two, (5.3) is simply the two-dimensional Born-Infeld equation 
(2.1). Now relax the imposition  of zero on the right-hand side of (5.3) and define a new 
Lagrangian density, LZ = LlELl, with equation of motion 

In the case of a three-dimensional spacetime this equation is just (1.7). The general pattern 
is clear; defining recursively the density L, by L, = LI&L,-I, the equation in d dimensions 
is simply given by L J - ~  = 0. This is in exact parallel with the iterative generation of the 
universal field equation, where the only difference is that instead of a specific choice for 
L I .  any function of &, which is homogeneous of weight one, with a vanishing Hessian 
det(@zi,,) will do [IO]. 
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